Vapor-fed bio-hybrid fuel cell
نویسندگان
چکیده
BACKGROUND Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N2) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. RESULTS Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. CONCLUSIONS The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small operations and should be generalizable to other biofuels and waste-to-energy systems.
منابع مشابه
A Microscale Vapor-fed Formic Acid Fuel Cell
A silicon-based microfabricated fuel cell running on formic acid vapor as a fuel has been developed to provide on-chip power for MEMS devices, without using any ancillary devices such as heaters, water management, air pumps, etc. As a demonstration instrument, an integrated silicon-based membrane electrode assembly and fuel evaporative structure was packaged in a plastic package to test the vap...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کاملEffect of recycling solid oxide fuel cell products on the performance of a SOFC-Gas turbine hybrid system
In this study, the effect of recycling fuel cell products on the performance of a solid oxide fuel cell and gas turbine (SOFC-GT) hybrid system was investigated. Three types of products recycling are considered: cathode products recycling (CPR), anode products recycling (APR), and both cathode and anode products recycling (BACPR). In the present work, operating temperature and limiting curre...
متن کاملExergy Analysis of a Molten Carbonate Fuel Cell-Turbo Expander-Steam Turbine Hybrid Cycle
Exergy analysis of an integrated molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle has been presented in this study. The proposed cycle has been used as a sustainable energy approach to provide a micro hybrid power plant with high exergy efficiency. To generate electricity by the mentioned system, an externally reformed molten carbonate fuel cell located upstream of the combi...
متن کاملStandardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis.
Populations of metabolically active bacteria were associated at an electrode surface via vapor-deposition of silica to facilitate in situ characterization of bacterial physiology and bio-electrocatalytic activity in microbial fuel cells.
متن کامل